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Abstract

The propagation behavior of Love waves in a semi-infinite functionally graded piezoelectric material (FGPM) with a

quadratic variation is addressed. The coupled electromechanical field equations are solved, and the dispersion relations,

displacement, electric potential, and stress fields are obtained analytically for both electrically open and short conditions.

The effects of gradient coefficient on phase velocity, group velocity, and electromechanical coupling factor are plotted and

discussed. It is shown that the phase velocity associated with the non-piezoelectric case coincides with that of the

corresponding piezoelectric material under electrically open conditions. Because of gradual variation in electromechanical

properties, the initial stress during manufacturing process is negligible. Therefore, this model serves as an excellent

substitute for the typical layered piezoelectric structures used in surface acoustic wave (SAW) devices. This work provides

with a theoretical foundation for the design and practical applications of SAW devices with high performance.

r 2007 Published by Elsevier Ltd.
1. Introduction

Love waves propagation in a solid with semi-infinite extent has been one of the topics of great interests to
many researchers and engineers in applied and engineering mechanics over the last century. Following Love
[1], who examined the appearance of surface waves in a homogeneous half-space overlaid by a layer, many
researchers have presented extensive fundamental results for the case of isotropic and anisotropic medium.
For the treatments and explorations of such problems, the reader is referred to see the extensive list of
references presented in Refs. [2–4] for isotropic material, and Refs. [5–8] for anisotropic one.

Recently, Love waves propagation in piezoelectric materials is of major concern because of their high
performance in technological applications such as surface acoustic wave (SAW) devices, signal transmission,
signal processing, and information storage [9]. Many researchers have theoretically considered the
propagation of surface waves in the typical SAW devices consisting of a piezoelectric layer deposited on
the elastic substrate or vice versa [10–17]. During the manufacturing processes of layered piezoelectric
structures, due to the mismatch in electromechanical properties of adjacent layers, the presence of internal
ee front matter r 2007 Published by Elsevier Ltd.
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residual stresses within the layers is inevitable. Liu et al. [18], Qian et al. [19], Jin et al. [20], Su et al. [21], and
Du et al. [22] studied the effects of homogeneous and inhomogeneous initial stress on the propagation
behavior of Love waves in a layered piezoelectric medium.

With the development of the fabrication technology, functionally graded piezoelectric materials (FGPM)
can be manufactured and used in SAW devices to improve their efficiency and other features. Li [23], Du et al.
[24], and Qian et al. [25] studied the features of Love waves in an FGPM coating layer with an exponential
variation in material properties bonded to a substrate, by applying direct and Wentzel–Kramers–Brillouin
(WKB) methods.

In this work, Love waves propagation in an FGPM semi-infinite medium with a quadratic variation in
material properties is considered. The analytical solution of dispersion relations is obtained under electrically
open and short conditions, and the effects of gradient coefficient on phase velocity, group velocity, and
electromechanical coupling factor are discussed. The effect of piezoelectricity on the phase velocity is
examined by comparison of the results for the piezoelectric and the corresponding elastic materials. Due to the
gradual spatial variation in the electromechanical properties of FGPMs, the amount of initial stress
introduced in such materials during the manufacturing processes is negligible. Since the medium is
piezoelectric, a source of excitation can be due to an applied electric potential. Thus, FGPM is desirable
substitute for the typical layered piezoelectric structures used in SAW devices. A theoretical foundation
relevant to the design and practical application of high-performance SAW devices is given in this paper.

2. Problem statement and governing equations

Let us consider an elastic transversely isotropic FGPM half-space as depicted in Fig. 1. The origin of the
Cartesian coordinate system ðx; y; zÞ is set on the surface with the z-axis pointing into the half-space, and it is
assumed to be the axis of symmetry of the medium. The polling direction of the piezoelectric material is
parallel to the z-axis, and the material properties change gradually with depth.

The governing equations of the piezoelectricity in the absence of body forces and free charges can be
expressed as

sij; j ¼ r
q2ui

qt2
,

Di;i ¼ 0, ð1Þ
Fig. 1. A functionally graded piezoelectric medium with quadratic variation.
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with i; j ¼ x; y; z. The constitutive relations for transversely isotropic piezoelectric materials may be
written as
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where c66 ¼ ðc11 � c12Þ=2,

ēij ¼
1
2
ðui;j þ uj;iÞ,

Ei ¼ �f;i. ð4Þ

In Eqs. (1)–(4), sij , ēij , ui, Ei, and Di are the components of stress, strain, displacement, electric field and
electric displacement, respectively. f is the electric potential, and r is the mass density, and cij, eij , and eij are
the elastic moduli, piezoelectric and dielectric constants, respectively.

On the assumption that Love waves propagate in the x-direction, it can be written that

u ¼ w ¼ 0,

v ¼ vðx; z; tÞ,

f ¼ fðx; z; tÞ. ð5Þ

where u, v, and w are the displacements in the x, y, and z-directions, respectively. Here, it is assumed that the
transversely isotropic FGPM medium has a constant mass density r, whereas the other coefficients cij, eij, and
eij have a quadratic variation in the z-direction

cijðzÞ ¼ c0ijð1þ bzÞ2,

eijðzÞ ¼ e0ijð1þ bzÞ2,

eijðzÞ ¼ e0ijð1þ bzÞ2, ð6Þ

where b40 is the gradient factor. c0ij, e0ij , e
0
ij is, respectively, the value of cij, eij, eij on the surface. It is obvious

that b ¼ 0 corresponds to the homogeneous case, which has no significant interpretation in the context of
Love waves propagation.

Employing Eqs. (1)–(6), the governing equations for the medium can be written as

r2 þ
2b

1þ bz

q
qz

� �
c044vþ e015f
� �

¼
r

ð1þ bzÞ2
q2v

qt2
,

r2 þ
2b

1þ bz

q
qz

� �
ðe015v� e011fÞ ¼ 0, ð7Þ

where r2 ¼ ðq2=qx2Þ þ ðq2=qz2Þ.
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The air is regarded as vacuum since its dielectric constant is far less than that of the piezoelectric medium.
Therefore, the governing equation associated with the electric potential in the air is

r2fa
¼ 0. (8)

The traction free condition at the surface implies that

syzðx; 0; tÞ ¼ 0. (9)

The electrically open conditions at the free surface leads to

fðx; 0; tÞ ¼ fa
ðx; 0; tÞ; Dzðx; 0; tÞ ¼ Daðx; 0; tÞ (10)

and the electrically short condition at the free surface yields

fðx; 0; tÞ ¼ 0. (11)

In addition to the above conditions, one must satisfy the following regularity conditions:

lim
z!�1

fa
ðx; z; tÞ ¼ 0,

lim
z!þ1

vðx; z; tÞ ¼ 0,

lim
z!þ1

fðx; z; tÞ ¼ 0. ð12Þ
3. Analytical solution

In order to solve the coupled system of partial differential equations (7), it is assumed that

c ¼ f�
e15

e11
v. (13)

Substituting Eq. (13) into Eq. (7) leads to

r2 þ
2b

1þ bz

q
qz

� �
c ¼ 0,

r2 þ
2b

1þ bz

q
qz
�

1

c2shð1þ bzÞ2
q2

qt2

 !
v ¼ 0, ð14Þ

where csh is the shear wave velocity in the homogeneous piezoelectric medium, and it is given by

c2sh ¼
1

r
c044 þ

e015
2

e011

 !
. (15)

Taking the solutions of Eq. (14) to be in the following form:

cðx; z; tÞ ¼ cðzÞeikðx�ctÞ,

vðx; z; tÞ ¼ vðzÞeikðx�ctÞ, ð16Þ

where k is the wavenumber, and c is the phase velocity of wave propagation, the following ordinary
differential equations are obtained:

c00ðzÞ þ
2b

1þ bz
c0ðzÞ � k2cðzÞ ¼ 0,

v00ðzÞ þ
2b

1þ bz
v0ðzÞ � k2 1þ

c2

c2shð1þ bzÞ2

 !
vðzÞ ¼ 0. ð17Þ
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The exact solutions of these equations are

cðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bz
p AI1

2
k
1þ bz

b

� �
þ BK1

2
k
1þ bz

b

� �� �
, (18a)

vðzÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bz
p CIs k

1þ bz

b

� �
þDKs k

1þ bz

b

� �� �
, (18b)

where

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
�

k c

b csh

� �2
s

. (19)

Here, A, B, C, and D are the unknown coefficients appropriate to the boundary conditions, and InðzÞ and
KnðzÞ are the nth-order modified Bessel functions of the first and second kind, respectively. As can be easily
deduced, s can be either real for low-phase velocities (c=cshpb=2k) or imaginary for high-phase velocities
(c=csh4b=2k).

Substituting Eqs. (18a) and (18b) into Eq. (13), the electric potential can be obtained as

fðx; z; tÞ ¼
eikðx�ctÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bz
p AI1

2
k
1þ bz

b

� �
þ BK1

2
k
1þ bz

b

� �	

þ
e015
e011

CIs k
1þ bz

b

� �
þDKs k

1þ bz

b

� �� �

. ð20Þ

The solution of Eq. (8) yields the electric potential in the air

fa
ðx; z; tÞ ¼ Eeikðx�iz�ctÞ, (21)

where E is an unknown coefficient determined from the pertinent boundary conditions.
Using the asymptotic expansions of the modified Bessel functions for large arguments [26], one may express

the asymptotic behavior of the displacement and the electrical potential in the limit of z!þ1 as

vðzÞ�

ffiffiffiffiffiffiffiffi
k

2pb

r
ðCekz � pDe�kzÞ,

fðzÞ�

ffiffiffiffiffiffiffiffi
k

2pb

r
Aþ

e015
e011

C

� �
ekz � p Bþ

e015
e011

D

� �
e�kz

� �
. ð22Þ

From this analysis, it is evident that the regularity conditions (12) would require A ¼ C ¼ 0. As a result, the
solutions for the displacement and the electrical potential in Eqs. (18b) and (20) can be reduced to

vðx; z; tÞ ¼
Dffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bz
p Ks k

1þ bz

b

� �
eikðx�ctÞ, (23a)

fðx; z; tÞ ¼
eikðx�ctÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bz
p BK1=2 k

1þ bz

b

� �
þ

e015
e011

DKs k
1þ bz

b

� �� �	 

. (23b)

Furthermore, from the integral representation of the modified Bessel function of the second kind [26]

KnðxÞ ¼
Z 1
0

e�x coshðtÞ coshðntÞdt; j argðxÞjo
p
2
, (24)

it follows that KnðxÞ is a real-valued function for either real or imaginary order n, which in Eqs. (23a) and
(23b) corresponds to the lower and higher phase velocity cases, respectively. This is in agreement with the
assumption that there is no net wave propagation in the z-direction.
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4. Phase velocity equations

In this section, the phase velocity equation is obtained for both electrically open and short condi-
tions at the free surface. In addition, the dispersion relation for non-piezoelectric medium is also
presented.

Substituting Eqs. (23a) and (23b) into Eq. (1), and using Eq. (6), the elastic and electrical fields of the
medium are obtained in terms of the unknown coefficients B, D, and E. These unknown coefficients are
determined analytically by employing the boundary conditions. The traction free boundary condition (9)
yields the following equation:

2aK3=2ðaÞBþ rc2sh½2aKsþ1ðaÞ � ð2s� 1ÞKsðaÞ�D ¼ 0, (25)

where a ¼ k=b. The details of the remaining conditions are discussed in Sections 4.1–4.3 below.

4.1. Electrically open conditions at the free surface

From the electrically open conditions at the free surface in Eq. (10), the following equations can be
obtained:

K1=2ðaÞBþ
e015
e011

KsðaÞD� E ¼ 0, (26)

e011
e0

K3=2ðaÞB� E ¼ 0. (27)

Using Eqs. (25)–(27) the unknown coefficients B, D, and E can be determined. As a result, the phase velocity
equation is obtained to be

r c2sh
K1=2ðaÞ
K3=2ðaÞ

�
e011
e0

� �
2a

Ksþ1ðaÞ
KsðaÞ

þ ð1� 2sÞ

� �
� 2a

e015
2

e011
¼ 0. (28)

4.2. Electrically short conditions at the free surface

Substituting Eq. (23b) into the electrically short condition at the free surface Eq. (11) leads to

K1=2ðaÞBþ
e015
e011

KsðaÞD ¼ 0. (29)

The unknown coefficients B and D can be determined from Eqs. (25) and (29). For non-trivial solutions, one
must satisfy the following phase velocity equation:

rc2sh
K1=2ðaÞ
K3=2ðaÞ

2a
Ksþ1ðaÞ
KsðaÞ

þ ð1� 2sÞ

� �
� 2a

e015
2

e011
¼ 0. (30)

4.3. Non-piezoelectric material

If the piezoelectric constant e15 ¼ 0, that is the medium is elastic, then the dispersion relation reads

2a
Ksþ1ðaÞ
KsðaÞ

þ ð1� 2sÞ ¼ 0. (31)
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5. Electromechanical fields

After determining the unknown coefficients, the elastic and electrical fields of the medium can be
expressed as

vðx; z; tÞ ¼
bC1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bz
p Ks k

1þ bz

b

� �
eikðx�ctÞ,

fðx; z; tÞ ¼
C1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bz
p K1=2 k

1þ bz

b

� �
þ b

e015
e011

Ks k
1þ bz

b

� �� �
eikðx�ctÞ,

sxyðx; z; tÞ ¼ ikC1ð1þ bzÞ3=2 brc2shKs k
1þ bz

b

� �
þ e015K1=2 k

1þ bz

b

� �� �
eikðx�ctÞ, ð32Þ

syzðx; z; tÞ ¼ C1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bz
p brc2shb

2
ð2s� 1ÞKs k

1þ bz

b

� �
� 2að1þ bzÞKsþ1 k

1þ bz

b

� �� �	

�ke015ð1þ bzÞK3=2 k
1þ bz

b

� �

eikðx�ctÞ,

fa
ðx; z; tÞ ¼ C1

e011
e0

K3=2ðaÞe
ikðx�iz�ctÞ,

where

b ¼

e011
e0
K3=2ðaÞ �K1=2ðaÞ for open conditions;

e011
e015

K1=2ðaÞ
KsðaÞ

for short conditions

8>>><
>>>:

(33)

and C1 is a constant corresponding to the amplitude of excitation. It is evident that the electrical potential in
the air fa is zero for electrically short condition.

6. Numerical results and discussion

In Section 4, the dispersion relations for the FGPM medium with quadratic variation under different
boundary conditions were obtained analytically. In order to demonstrate the influences of the gradient
coefficient on the phase velocity, group velocity, and coupled electromechanical factor, a numerical example is
proposed. Consider an FGPM medium made of PZT-5H with the following properties: c044 ¼ 23� 109 Nm�2;
e015 ¼ 17Cm�2; e011 ¼ 15� 10�9 C2 N�1 m�2; r ¼ 7:5� 103 kgm�3. Assume that all the material properties,
except for the mass density r which is constant, vary quadratically as specified in Eq. (6). In addition,
e0 ¼ 8:85� 1012 Fm�1 is used as the dielectric constant of vacuum.

The phase velocity c can be calculated by numerical solution of the dispersion Eqs. (28), (30) and (31) for the
electrically open and short conditions as well as for the non-piezoelectric medium, respectively. Furthermore,
the group velocity cg which expresses the rate of energy transmission, is introduced to explain the dispersion
relation. The group velocity is defined as

cg ¼ cþ k
dc

dk
. (34)

The other significant parameter represents the coupled electromechanical factor K2 which plays an important
role in the design of SAW devices. It is defined for surface waves as [9]

K2 ¼ 2
copen � cshort

copen
, (35)

where copen and cshort are the phase velocities for the electrically open and short cases, respectively.
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Figs. 2 and 3 show the phase and group velocities of the first and second modes for the electrically open and
short cases, respectively. The first and second modes for each case correspond to the two smallest roots of the
pertinent dispersion relation. The results indicate that, for a given wavenumber the phase velocity of Love
waves increases with an increase of the gradient factor. For both electrically short and open conditions, the
energy propagates in dispersion behaviors, i.e. the rate of the energy propagation cg, does not exceed that of
the wave propagation c. It can be found that when k=b tends to infinity, phase velocity approaches to csh. For
large wavenumbers the group velocity become less than csh for electrically short condition while it tends to csh
for electrically open case.

A comparison between the first mode of the phase velocity for electrically short and open cases and non-
piezoelectric medium is illustrated in Fig. 4. It is evident that the phase velocity for electrically short case is less
than that for electrically open case. As a result, the phase velocity for the non-piezoelectric half-space is the
1
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Fig. 2. Phase and group velocity of the first and second modes for the electrically open case.

0.1

1

10

100

0.01 10

c/c sh (1
st mode)

c/c sh (2
nd mode)

cg /c sh (1
st mode)

cg /c sh (2
nd mode)

0.1

k / b
1

Fig. 3. Phase and group velocity of the first and second modes for the electrically short case.
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same as that for electrically open case. This fact is consistent with the dispersion equations given by Eqs. (28)
and (31).

Fig. 5 depicts the relation between the non-dimensional wavenumber and the coupled electromechanical
factor. The coupled electromechanical factor increases with increase of gradient factor in the second mode. In
the first mode, the coupled electromechanical factor reaches to a maximum value of about 0:38 for
0:6ok=bo1:3 and attains the minimum value of 0.25 at very low wavenumbers, i.e. k=b � 0:01. In
comparison with the typical layered piezoelectric systems and systems consisting of an FGPM layer bonded to
a homogeneous substrate considered by previous investigators, the above-mentioned peak of 0.38 is a
significant value for the coupled electromechanical factor that can improve the capability of SAW devices.

7. Conclusion

The propagation behavior of Love waves in an FGPM semi-infinite medium with a quadratic variation in
electromechanical properties is studied. The coupled electromechanical field equations are solved exactly for
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the dispersion relations, displacement, electric potential, and stress fields under both electrically open and
short conditions. In addition the case of a non-piezoelectric medium is considered. The effects of gradient
coefficient on phase velocity, group velocity, and electromechanical coupling factor are plotted and discussed.
It is found that the phase velocity for the non-piezoelectric half-space is the same as that for the electrically
open case. An interesting phenomenon observed in this work is that FGPM medium exhibits higher peak for
the coupled electromechanical factor as compared to the case of a typical layered piezoelectric medium and the
case of a homogeneous medium coated by an FGPM layer considered in literature. This important feature of
FGPM medium makes it a preferred candidate for use in SAW devices.
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